1. Reppert, S. M. & Weaver, D. R. Coordination of circadian time in mammals. Nature 418, 935–941 ( 2002 ) .
  2. Colwell, C. S. Linking nervous bodily process and molecular oscillations in the SCN. Nat. Rev. Neurosci. 12, 553–569 ( 2011 ) .
  3. Selemon, L. D. A role for synaptic malleability in the adolescent development of executive affair. Transl Psychiatry 3, e238 ( 2013 ) .
  4. Mighdoll, M. I., Tao, R., Kleinman, J. E. & Hyde, T. M. Myelin, myelin-related disorders, and psychosis. Schizophr. Res. 161, 85–93 ( 2015 ).
  5. Hsu, P. K., Ptacek, L. J. & Fu, Y. H. Genetics of human rest behavioral phenotypes. Methods Enzymol. 552, 309–324 ( 2015 ) .
  6. Roenneberg, T. & Merrow, M. Entrainment of the human circadian clock. Cold Spring Harb. Symp. Quant. Biol. 72, 293–299 ( 2007 ) .
  7. Foster, R. G. et aluminum. Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog. Mol. Biol. Transl Sci. 119, 325–346 ( 2013 ) .
  8. Werner, H., Lebourgeois, M. K., Geiger, A. & Jenni, O. G. Assessment of chronotype in four- to eleven-year-old children : dependability and robustness of the Children ’ mho Chronotype Questionnaire ( CCTQ ). Chronobiol. Int. 26, 992–1014 ( 2009 ) .
  9. Simpkin, C. T. et aluminum. Chronotype is associated with the time of the circadian clock and sleep in toddlers. J. Sleep Res. 23, 397–405 ( 2014 ) .
  10. Crowley, S. J. et alabama. A longitudinal judgment of sleep timing, circadian phase, and phase angle of entrainment across homo adolescence. PLOS ONE 9, e112199 ( 2014 ) .
  11. Chen, C. Y. et aluminum. Effects of aging on circadian patterns of gene formula in the human prefrontal cerebral cortex. Proc. Natl Acad. Sci. USA 113, 206–211 ( 2015 ). This is the largest-scale study of circadian rhythms of gene expression in human post-mortem brain tissue, revealing age-related decline in the expression of core circadian genes and the emergence of other rhythmic pathways in older subjects .
  12. Cornelissen, G. & Otsuka, K. Chronobiology of aging : a mini-review. Gerontology 63, 118–128 ( 2017 ) .
  13. Drake, C. L., Roehrs, T., Richardson, G., Walsh, J. K. & Roth, T. Shift influence sleep disorder : preponderance and consequences beyond that of symptomatic day workers. Sleep 27, 1453–1462 ( 2004 ) .
  14. Ramin, C. et alabama. Night shift work at specific age ranges and chronic disease risk factors. Occup. Environ. Med. 72, 100–107 ( 2015 ) .
  15. Bedrosian, T. A. & Nelson, R. J. time of light exposure affects mood and brain circuits. Transl Psychiatry 7, e1017 ( 2017 ) .
  16. Bedrosian, T. A. & Nelson, R. J. determine of the modern abstemious environment on climate. Mol. Psychiatry 18, 751–757 ( 2013 ) .
  17. Nakata, A. et alabama. Association of sickness absence with poor people rest and depressive symptoms in shift workers. Chronobiol. Int. 21, 899–912 ( 2004 ) .
  18. Roth, T. Shift work disorder : overview and diagnosis. J. Clin. Psychiatry 73, e09 ( 2012 ) .
  19. Wright, K. P. Jr, Bogan, R. K. & Wyatt, J. K. Shift work and the appraisal and management of chemise work perturb ( SWD ). Sleep Med. Rev. 17, 41–54 ( 2012 ) .
  20. Benca, R. et alabama. Biological rhythm method of birth control, higher brain function, and demeanor : gaps, opportunities, and challenges. Brain Res. Rev. 62, 57–70 ( 2009 ) .
  21. Poggiogalle, E., Jamshed, H. & Peterson, C. M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 84, 11–27 ( 2018 ) .
  22. Chaudhari, A., Gupta, R., Makwana, K. & Kondratov, R. Circadian clocks, diets and aging. Nutr. Healthy Aging 4, 101–112 ( 2017 ) .
  23. Rivkees, S. A. Developing circadian rhythmicity in infants. Pediatr. Endocrinol. Rev. 1, 38–45 ( 2003 ) .
  24. Swaab, D. F. Development of the homo hypothalamus. Neurochem. Res. 20, 509–519 ( 1995 ) .
  25. VanDunk, C., Hunter, L. A. & Gray, P. A. Development, maturation, and necessity of transcription factors in the mouse suprachiasmatic nucleus. J. Neurosci. 31, 6457–6467 ( 2011 ) .
  26. Reppert, S. M. Pre-natal development of a hypothalamic biological clock. Progress Brain Res. 93, 119–131 ; discussion 132 ( 1992 ) .
  27. Reppert, S. M. Interaction between the circadian clocks of mother and fetus. Ciba Found. Symp. 183, 198–207 ; discussion 207–111 ( 1995 ) .
  28. Reppert, S. M., Weaver, D. R. & Rivkees, S. A. Maternal communication of circadian phase to the developing mammal. Psychoneuroendocrinology 13, 63–78 ( 1988 ) .
  29. Shearman, L. P., Zeitzer, J. & Weaver, D. R. Widespread expression of functional D1-dopamine receptors in fetal rat brain. Brain Res. Dev. Brain Res. 102, 105–115 ( 1997 ) .
  30. Reiter, R. J., Tan, D. X., Korkmaz, A. & Rosales-Corral, S. A. Melatonin and stable circadian rhythm optimize maternal, placental and fetal physiology. Hum. Reprod. Update 20, 293–307 ( 2014 ) .
  31. Okatani, Y. et alabama. Maternal–fetal transportation of melatonin in meaning women near term. J. Pineal Res. 25, 129–134 ( 1998 ) .
  32. Schenker, S. et alabama. antioxidant enchant by the homo placenta. Clin. Nutr. 17, 159–167 ( 1998 ) .
  33. Davis, F. C. & Mannion, J. Entrainment of hamster whelp circadian rhythm method of birth control by prenatal melatonin injections to the mother. Am. J. Physiol. 255, R439–R448 ( 1988 ) .
  34. Seron-Ferre, M. et alabama. circadian rhythm in the fetus. Mol. Cell. Endocrinol. 349, 68–75 ( 2012 ) .
  35. Seron-Ferre, M., Riffo, R., Valenzuela, G. J. & Germain, A. M. Twenty-four-hour convention of hydrocortisone in the human fetus at terminus. Am. J. Obstet. Gynecol. 184, 1278–1283 ( 2001 ) .
  36. Kennaway, D. J., Goble, F. C. & Stamp, G. E. Factors influencing the development of melatonin rhythmicity in humans. J. Clin. Endocrinol. Metab. 81, 1525–1532 ( 1996 ) .
  37. Bisanti, L., Olsen, J., Basso, O., Thonneau, P. & Karmaus, W. Shift influence and subfecundity : a european multicenter learn. european Study Group on Infertility and Subfecundity. J. Occup. Environ. Med. 38, 352–358 ( 1996 ) .
  38. Aspholm, R. et alabama. ad-lib abortions among finnish flight attendants. J. Occup. Environ. Med. 41, 486–491 ( 1999 ) .
  39. cone, J. E., Vaughan, L. M., Huete, A. & Samuels, S. J. Reproductive health outcomes among female flight attendants : an exploratory cogitation. J. Occup. Environ. Med. 40, 210–216 ( 1998 ) .
  40. Mahoney, M. M. Shift shape, jet imprison, and female reproduction. Int. J. Endocrinol. 2010, 813764 ( 2010 ) .
  41. Varcoe, T. J. et aluminum. characterization of the maternal reception to chronic phase shifts during gestation in the rat : implications for fetal metabolic programming. PLOS ONE 8, e53800 ( 2013 ) .
  42. Torres-Farfan, C. et aluminum. Maternal melatonin selectively inhibits hydrocortisone production in the primate fetal adrenal gland. J. Physiol. 554, 841–856 ( 2004 ) .
  43. Seron-Ferre, M. et aluminum. affect of chronodisruption during archpriest pregnancy on the enate and newborn temperature rhythm. PLOS ONE 8, e57710 ( 2013 ) .
  44. Matsumoto, T. et alabama. circadian myometrial and endocrine gland rhythm in the pregnant rhesus macaque : effects of constant luminosity and timed melatonin infusion. Am. J. Obstet. Gynecol. 165, 1777–1784 ( 1991 ) .
  45. Novakova, M., Sladek, M. & Sumova, A. vulnerability of meaning rats to restricted eating schedule synchronizes the SCN clocks of their fetuses under ceaseless inner light but not under a light-dark regimen. J. Biol. Rhythms 25, 350–360 ( 2010 ) .
  46. Vilches, N. et alabama. Gestational chronodisruption impairs hippocampal saying of NMDA sense organ subunits Grin1b/Grin3a and spatial memory in the pornographic offspring. PLOS ONE 9, e91313 ( 2014 ) .
  47. Voiculescu, S. E. et aluminum. Behavioral and molecular effects of prenatal continuous sparkle exposure in the adult rotter. Brain Res. 1650, 51–59 ( 2016 ) .
  48. Smarr, B. L., Grant, A. D., Perez, L., Zucker, I. & Kriegsfeld, L. J. Maternal and early-life circadian disturbance have durable negative consequences on offspring development and pornographic behavior in mouse. Sci. Rep. 7, 3326 ( 2017 ) .
  49. Cisse, Y. M., Russart, K. L. & Nelson, R. J. Parental photograph to dim abstemious at night anterior to mating alters offspring adaptive immunity. Sci. Rep. 7, 45497 ( 2017 ) .
  50. Cisse, Y. M., Russart, K. L. G. & Nelson, R. J. Depressive-like behavior is elevated among offspring of parents exposed to dim alight at night anterior to mating. Psychoneuroendocrinology 83, 182–186 ( 2017 ) .
  51. Lunn, R. M. et alabama. Health consequences of electric fall practices in the modern earth : a composition on the National Toxicology Program ’ s workshop on shift ferment at night, artificial idle at night, and circadian disruption. Sci. Total Environ. 607–608, 1073–1084 ( 2017 ) .
  52. Kennaway, D. J., Stamp, G. E. & Goble, F. C. Development of melatonin production in infants and the impact of prematureness. J. Clin. Endocrinol. Metab. 75, 367–369 ( 1992 ) .
  53. Davis, K. F., Parker, K. P. & Montgomery, G. L. Sleep in infants and young children : part two : common sleep problems. J. Pediatr. Health Care 18, 130–137 ( 2004 ) .
  54. Dahl, R. E. Sleep, learning, and the developing genius : early-to-bed as a healthy and judicious choice for school aged children. Sleep 28, 1498–1499 ( 2005 ) .
  55. Wolke, D., Meyer, R., Ohrt, B. & Riegel, K. Incidence and perseverance of problems at sleep attack and sleep continuance in the preschool period : results of a prospective study of a representative sample distribution in Bavaria [ German ]. Prax Kinderpsychol. Kinderpsychiatr. 43, 331–339 ( 1994 ) .
  56. Gaylor, E. E., Burnham, M. M., Goodlin-Jones, B. L. & Anders, T. F. A longitudinal follow-up learn of new children ’ s sleep patterns using a developmental classification system. Behav. Sleep Med. 3, 44–61 ( 2005 ) .
  57. Touchette, E. et aluminum. Associations between sleep duration patterns and behavioral/cognitive operation at school introduction. Sleep 30, 1213–1219 ( 2007 ) .
  58. Kobayashi, K. et alabama. Poor toddler-age sleep schedules predict school-age behavioral disorders in a longitudinal survey. Brain Dev. 37, 572–578 ( 2015 ) .
  59. Gregory, A. M. et aluminum. prospective longitudinal associations between haunting sleep problems in childhood and anxiety and low disorders in adulthood. J. Abnorm. Child Psychol. 33, 157–163 ( 2005 ) .
  60. Gregory, A. M., Caspi, A., Moffitt, T. E. & Poulton, R. Sleep problems in childhood predict neuropsychological operation in adolescence. Pediatrics 123, 1171–1176 ( 2009 ) .
  61. Hysing, M., Sivertsen, B., Garthus-Niegel, S. & Eberhard-Gran, M. Pediatric sleep problems and social-emotional problems. A population-based survey. Infant Behav. Dev. 42, 111–118 ( 2016 ) .
  62. Gregory, A. M., Eley, T. C., O ’ Connor, T. G. & Plomin, R. Etiologies of associations between childhood sleep and behavioral problems in a large counterpart sample. J. Am. Acad. Child Adolesc. Psychiatry 43, 744–751 ( 2004 ) .
  63. Bendova, Z., Sumova, A. & Illnerova, H. Development of circadian rhythmicity and photoperiodic reaction in subdivisions of the denounce suprachiasmatic nucleus. Brain Res. Dev. Brain Res. 148, 105–112 ( 2004 ) .
  64. Duncan, M. J., Banister, M. J. & Reppert, S. M. Developmental appearance of light–dark entrainment in the scab. Brain Res. 369, 326–330 ( 1986 ) .
  65. Fahrenkrug, J., Nielsen, H. S. & Hannibal, J. expression of melanopsin during development of the rat retina. Neuroreport 15, 781–784 ( 2004 ) .
  66. Gonzalez-Menendez, I., Contreras, F., Cernuda-Cernuda, R. & Garcia-Fernandez, J. M. Daily rhythm method of birth control of melanopsin-expressing cells in the mouse retina. Front. Cell Neurosci. 3, 3 ( 2009 ) .
  67. Landgraf, D., Koch, C. E. & Oster, H. Embryonic growth of circadian clocks in the mammalian suprachiasmatic lens nucleus. Front. Neuroanat. 8, 143 ( 2014 ) .
  68. Leard, L. E., Macdonald, E. S., Heller, H. C. & Kilduff, T. S. Ontogeny of photic-induced c-fos messenger rna expression in scab suprachiasmatic nucleus. Neuroreport 5, 2683–2687 ( 1994 ) .
  69. Tarttelin, E. E. et alabama. construction of opsin genes early in ocular development of humans and mouse. Exp. Eye Res. 76, 393–396 ( 2003 ) .
  70. Rivkees, S. A. The exploitation of circadian rhythm : from animals to Humans. Sleep Med. Clin. 2, 331–341 ( 2007 ) .
  71. Guyer, C. et aluminum. very preterm infants show earlier egress of 24-hour sleep-wake rhythm compared to terminus infants. Early Hum. Dev. 91, 37–42 ( 2015 ) .
  72. Boivin, D. B., Duffy, J. F., Kronauer, R. E. & Czeisler, C. A. Dose-response relationships for reset of human circadian clock by idle. Nature 379, 540–542 ( 1996 ) .
  73. Rivkees, S. A., Hofman, P. L. & Fortman, J. Newborn primate infants are entrained by gloomy intensity ignition. Proc. Natl Acad. Sci. USA 94, 292–297 ( 1997 ) .
  74. Shanahan, T. L. & Czeisler, C. A. Physiological effects of light on the human circadian pacemaker. Semin. Perinatol. 24, 299–320 ( 2000 ) .
  75. Watanabe, S. et aluminum. Designing artificial environments for preterm infants based on circadian studies on pregnant uterus. Front. Endocrinol. 4, 113 ( 2013 ) .
  76. Morag, I. & Ohlsson, A. Cycled light in the intensive care unit for preterm and moo give birth system of weights infants. Cochrane Database Syst. Rev. 8, CD006982 ( 2013 ) .
  77. Vasquez-Ruiz, S. et aluminum. A light/dark cycle in the NICU accelerates torso weight amplification and shorten time to discharge in preterm infants. Early Hum. Dev. 90, 535–540 ( 2014 ) .
  78. Mirmiran, M. & Ariagno, R. L. Influence of light in the NICU on the development of circadian rhythm in preterm infants. Semin. Perinatol. 24, 247–257 ( 2000 ) .
  79. Boo, N. Y., Chee, S. C. & Rohana, J. Randomized controlled study of the effects of unlike durations of sparkle exposure on weight derive by preterm infants in a neonatal intensive care unit. Acta Paediatr. 91, 674–679 ( 2002 ) .
  80. Brandon, D. H., Holditch-Davis, D. & Belyea, M. Preterm infants born at less than 31 weeks ’ gestation have improved growth in cycle light compared with continuous near darkness. J. Pediatr. 140, 192–199 ( 2002 ). This randomized intervention study reports that preterm infants (<31 weeks) receiving cycled light (11 hours on and 11 hours off, with 1 transition hour for shift changes) during hospital care (~4 weeks) gained weight faster than age-matched infants receiving near darkness .
  81. Guyer, C. et aluminum. Cycled light exposure reduces fussing and crying in very preterm infants. Pediatrics 130, e145–e151 ( 2012 ) .
  82. Hao, H. & Rivkees, S. A. The biological clock of very premature archpriest infants is responsive to light. Proc. Natl Acad. Sci. USA 96, 2426–2429 ( 1999 ) .
  83. Lebel, V., Aita, M., Johnston, C., Heon, M. & Dupuis, F. Effects of cycle lighting versus continuous near dark on physiologic stability and motor natural process degree in preterm infants. Adv. Neonatal Care 17, 282–291 ( 2017 ) .
  84. Mann, N. P., Haddow, R., Stokes, L., Goodley, S. & Rutter, N. Effect of night and day on preterm infants in a newborn greenhouse : randomised trial. Br. Med. J. (Clin. Res. Ed.) 293, ( 1265–1267 ( 1986 ) .
  85. Rivkees, S. A., Mayes, L., Jacobs, H. & Gross, I. Rest-activity patterns of premature infants are regulated by cycle lighting. Pediatrics 113, 833–839 ( 2004 ) .
  86. Philipsen, A., Hornyak, M. & Riemann, D. Sleep and sleep disorders in adults with attention deficit/hyperactivity disorderliness. Sleep Med. Rev. 10, 399–405 ( 2006 ) .
  87. Coogan, A. N. & McGowan, N. M. A systematic follow-up of circadian function, chronotype and chronotherapy in attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 9, 129–147 ( 2017 ) .
  88. Rybak, Y. E., McNeely, H. E., Mackenzie, B. E., Jain, U. R. & Levitan, R. D. Seasonality and circadian predilection in pornographic attention-deficit/hyperactivity disorder : clinical and neuropsychological correlates. Compr. Psychiatry 48, 562–571 ( 2007 ) .
  89. Baird, A. L., Coogan, A. N., Siddiqui, A., Donev, R. M. & Thome, J. Adult attention-deficit hyperactivity perturb is associated with alterations in circadian cycle at the behavioral, hormone and molecular levels. Mol. Psychiatry 17, 988–995 ( 2012 ) .
  90. Fargason, R. E. et aluminum. Correcting check circadian phase with brilliantly light therapy predicts improvement in ADHD symptoms : a fender study. J. Psychiatr. Res. 91, 105–110 ( 2017 ) .
  91. Molina-Carballo, A. et alabama. Methylphenidate effects on rake serotonin and melatonin levels may help to synchronise biological rhythm in children with ADHD. J. Psychiatr. Res. 47, 377–383 ( 2013 ) .
  92. Wang, S. M. et alabama. Modafinil for the treatment of attention-deficit/hyperactivity disorderliness : a meta-analysis. J. Psychiatr. Res. 84, 292–300 ( 2017 ) .
  93. Gerrard, P. & Malcolm, R. Mechanisms of modafinil : a review of stream research. Neuropsychiatr. Dis. Treat. 3, 349–364 ( 2007 ) .
  94. Cortesi, F., Giannotti, F., Ivanenko, A. & Johnson, K. Sleep in children with autistic spectrum disorder. Sleep Med. 11, 659–664 ( 2010 ) .
  95. Richdale, A. L. & Schreck, K. A. Sleep problems in autism spectrum disorders : prevalence, nature, and possible biopsychosocial aetiologies. Sleep Med. Rev. 13, 403–411 ( 2009 ) .
  96. Giannotti, F. et alabama. An probe of sleep characteristics, EEG abnormalities and epilepsy in developmentally regressed and non-regressed children with autism. J. Autism Dev. Disord. 38, 1888–1897 ( 2008 ) .
  97. Takase, M., Taira, M. & Sasaki, H. Sleep–wake rhythm of autistic children. Psychiatry Clin. Neurosci. 52, 181–182 ( 1998 ) .
  98. Hayashi, E. Seasonal changes in sleep and behavioral problems in a downy case with autism. Psychiatry Clin. Neurosci. 55, 223–224 ( 2001 ) .
  99. Tordjman, S., Anderson, G. M., Pichard, N., Charbuy, H. & Touitou, Y. Nocturnal elimination of 6-sulphatoxymelatonin in children and adolescents with autistic disorderliness. Biol. Psychiatry 57, 134–138 ( 2005 ) .
  100. Nir, I. et aluminum. brief report : circadian melatonin, thyroid-stimulating hormone, prolactin, and hydrocortisone levels in serum of young adults with autism. J. Autism Dev. Disord. 25, 641–654 ( 1995 ) .
  101. Kulman, G. et aluminum. evidence of pineal endocrine hypofunction in autistic children. Neuro Endocrinol. Lett. 21, 31–34 ( 2000 ) .
  102. Melke, J. et aluminum. Abnormal melatonin deduction in autism spectrum disorders. Mol. Psychiatry 13, 90–98 ( 2008 ) .
  103. Simonneaux, V. & Ribelayga, C. Generation of the melatonin hormone message in mammals : a review of the complex regulation of melatonin synthesis by noradrenaline, peptides, and other pineal transmitters. Pharmacol. Rev. 55, 325–395 ( 2003 ) .
  104. Jin, Y., Choi, J., Won, J. & Hong, Y. The relationship between autism spectrum disorder and melatonin during fetal development. Molecules 23, E198 ( 2018 ) .
  105. Gringras, P., Nir, T., Breddy, J., Frydman-Marom, A. & Findling, R. L. Efficacy and base hit of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 56, 948–957 ( 2017 ) .
  106. Tordjman, S. et alabama. Autism as a perturb of biological and behavioral rhythm : toward new remedy perspectives. Front. Pediatr. 3, 1 ( 2015 ) .
  107. Hoel, E. P., Albantakis, L., Cirelli, C. & Tononi, G. Synaptic refinement during development and its effect on slow-wave bodily process : a computational sketch. J. Neurophysiol. 115, 2199–2213 ( 2016 ) .
  108. Goldstone, A. et alabama. The intercede character of cortical thickness and grey topic volume on sleep slow-wave natural process during adolescence. Brain Struct. Funct. 223, 669–685 ( 2017 ) .
  109. Cassidy, S. B., Schwartz, S., Miller, J. L. & Driscoll, D. J. Prader–Willi syndrome. Genet. Med. 14, 10–26 ( 2012 ) .
  110. Sahoo, T. et alabama. Prader–Willi phenotype caused by paternal lack for the HBII-85C/D box small nucleolar RNA cluster. Nat. Genet. 40, 719–721 ( 2008 ) .
  111. Lassi, G. et alabama. omission of the Snord116 / SNORD116 alters sleep in mice and patients with Prader–Willi syndrome. Sleep 39, 637–644 ( 2016 ) .
  112. Butler, J. V. et aluminum. preponderance of, and gamble factors for, physical ill-health in people with Prader–Willi syndrome : a population-based analyze. Dev. Med. Child Neurol. 44, 248–255 ( 2002 ) .
  113. Cavaille, J. et aluminum. identification of brain-specific and impress belittled nucleolar RNA genes exhibiting an unusual genomic organization. Proc. Natl Acad. Sci. USA 97, 14311–14316 ( 2000 ) .
  114. Galiveti, C. R., Raabe, C. A., Konthur, Z. & Rozhdestvensky, T. S. Differential regulation of non-protein coding RNAs from Prader–Willi syndrome locus. Sci. Rep. 4, 6445 ( 2014 ) .
  115. Runte, M. et aluminum. The IC- SNURFSNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum. Mol. Genet. 10, 2687–2700 ( 2001 ) .
  116. Powell, W. T. et alabama. A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expending. Hum. Mol. Genet. 22, 4318–4328 ( 2013 ) .
  117. Gossan, N. C. et aluminum. The E3 ubiquitin ligase UBE3A is an built-in component of the molecular circadian clock through regulating the BMAL1 transcription agent. Nucleic Acids Res. 42, 5765–5775 ( 2014 ) .
  118. Solter, D. Differential impress and expression of parental and parental genomes. Annu. Rev. Genet. 22, 127–146 ( 1988 ) .
  119. Martins-Taylor, K. et aluminum. Imprinted expression of UBE3A in non-neuronal cells from a Prader–Willi syndrome patient with an atypical deletion. Hum. Mol. Genet. 23, 2364–2373 ( 2014 ) .
  120. Rougeulle, C., Glatt, H. & Lalande, M. The Angelman syndrome candidate gene, UBE3A / E6-AP, is imprinted in brain. Nat. Genet. 17, 14–15 ( 1997 ) .
  121. Baron, C. A. et aluminum. Genomic and functional profile of twin chromosome 15 cell lines reveal regulative alterations in UBE3A-associated ubiquitin-proteasome pathway processes. Hum. Mol. Genet. 15, 853–869 ( 2006 ) .
  122. Herzing, L. B., Cook, E. H. Jr & Ledbetter, D. H. Allele-specific formula analysis by RNA-FISH demonstrates discriminatory maternal expression of UBE3 A and imprint care within 15q11-q13 duplications. Hum. Mol. Genet. 11, 1707–1718 ( 2002 ) .
  123. Hogart, A. et aluminum. Chromosome 15q11-13 duplicate syndrome brain reveals epigenetic alterations in gene expression not predicted from transcript count. J. Med. Genet. 46, 86–93 ( 2009 ) .
  124. Nishimura, Y. et aluminum. Genome-wide expression profile of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum. Mol. Genet. 16, 1682–1698 ( 2007 ) .
  125. Dindot, S. V., Antalffy, B. A., Bhattacharjee, M. B. & Beaudet, A. L. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal insufficiency results in abnormal dendritic spinal column morphology. Hum. Mol. Genet. 17, 111–118 ( 2008 ) .
  126. Yamasaki, K. et alabama. Neurons but not glial cells show reciprocal cross impress of smell and antisense transcripts of Ube3a. Hum. Mol. Genet. 12, 837–847 ( 2003 ) .
  127. Shi, S. Q., Bichell, T. J., Ihrie, R. A. & Johnson, C. H. Ube3a imprinting mar circadian robustness in Angelman syndrome models. Curr. Biol. 25, 537–545 ( 2015 ) .
  128. Boudreau, E. A. et aluminum. Review of disrupted sleep patterns in Smith–Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion. Am. J. Med. Genet. A 149A, 1382–1391 ( 2009 ) .
  129. Greenberg, F. et aluminum. Multi-disciplinary clinical study of Smith–Magenis syndrome ( deletion 17p11.2 ). Am. J. Med. Genet. 62, 247–254 ( 1996 ) .
  130. Gropman, A. L., Elsea, S., Duncan, W. C. Jr & Smith, A. C. New developments in Smith–Magenis syndrome ( del 17p11.2 ). Curr. Opin. Neurol. 20, 125–134 ( 2007 ) .
  131. Smith, A. C., Dykens, E. & Greenberg, F. Sleep disturbance in Smith–Magenis syndrome ( del 17p11.2 ). Am. J. Med. Genet. 81, 186–191 ( 1998 ) .
  132. Boone, P. M. et aluminum. abnormal circadian rhythm of melatonin in Smith–Magenis syndrome patients with RAI 1 detail mutations. Am. J. Med. Genet. A 155A, 2024–2027 ( 2011 ) .
  133. Walz, K. et aluminum. behavioral portrayal of mouse models for Smith–Magenis syndrome and dup ( 17 ) ( p11.2p11.2 ). Hum. Mol. Genet. 13, 367–378 ( 2004 ) .
  134. Lacaria, M., Gu, W. & Lupski, J. R. Circadian abnormalities in shiner models of Smith–Magenis syndrome : evidence for engagement of RAI1. Am. J. Med. Genet. A 161A, 1561–1568 ( 2013 ) .
  135. Williams, S. R., Zies, D., Mullegama, S. V., Grotewiel, M. S. & Elsea, S. H. Smith–Magenis syndrome results in disturbance of CLOCK gene recording and reveals an integral role for RAI1 in the care of circadian rhythmicity. Am. J. Hum. Genet. 90, 941–949 ( 2012 ) .
  136. De Leersnyder, H. et alabama. β1-adrenergic antagonists improve rest and behavioral disturbances in a circadian disorder, Smith–Magenis syndrome. J. Med. Genet. 38, 586–590 ( 2001 ) .
  137. De Leersnyder, H. et alabama. β1-adrenergic antagonists and melatonin reset the clock and restore rest in a circadian disorder, Smith–Magenis syndrome. J. Med. Genet. 40, 74–78 ( 2003 ) .
  138. De Leersnyder, H., Claustrat, B., Munnich, A. & Verloes, A. Circadian rhythm disorder in a rare disease : Smith–Magenis syndrome. Mol. Cell Endocrinol. 252, 88–91 ( 2006 ) .
  139. Elsea, S. H. & Girirajan, S. Smith–Magenis syndrome. Eur. J. Hum. Genet. 16, 412–421 ( 2008 ) .
  140. Logan, R. W. et aluminum. Impact of sleep and circadian cycle on addiction vulnerability in adolescents. Biol. Psychiatry 83, 987–996 ( 2017 ) .
  141. Roenneberg, T. et alabama. A marker for the goal of adolescence. Curr. Biol. 14, R1038–R1039 ( 2004 ) .
  142. Hagenauer, M. H. & Lee, T. M. The neuroendocrine master of the circadian system : adolescent chronotype. Front. Neuroendocrinol. 33, 211–229 ( 2012 ) .
  143. Hagenauer, M. H. & Lee, T. M. Adolescent sleep patterns in humans and testing ground animals. Horm. Behav. 64, 270–279 ( 2013 ) .
  144. Cain, N. & Gradisar, M. Electronic media use and sleep in school-aged children and adolescents : a review. Sleep Med. 11, 735–742 ( 2010 ) .
  145. Crowley, S. J., Cain, S. W., Burns, A. C., Acebo, C. & Carskadon, M. A. Increased sensitivity of the circadian system to luminosity in early/mid-puberty. J. Clin. Endocrinol. Metab. 100, 4067–4073 ( 2015 ). This study shows that endogenous melatonin levels of prepubertal children and early adolescents are more sensitive to the suppressive effects of acute light exposure during the evening than melatonin levels in late adolescents .
  146. Paruthi, S. et aluminum. recommend amount of sleep for pediatric populations : a consensus statement of the American Academy of Sleep Medicine. J. Clin. Sleep Med. 12, 785–786 ( 2016 ) .
  147. Basch, C. E., Basch, C. H., Ruggles, K. V. & Rajan, S. Prevalence of sleep duration on an average school night among 4 nationally representative consecutive samples of american high school students, 2007–2013. Prev. Chron. Dis. 11, E216 ( 2014 ) .
  148. Touitou, Y. Adolescent sleep misalignment : a chronic coal-black stave and a matter of public health. J. Physiol. Paris 107, 323–326 ( 2013 ) .
  149. Hasler, B. P. et aluminum. Weekend-weekday advances in sleep time are associated with adapted reward-related brain affair in goodly adolescents. Biol. Psychol. 91, 334–341 ( 2012 ) .
  150. Skeldon, A. C., Phillips, A. J. & Dijk, D. J. The effects of self-selected light–dark cycles and sociable constraints on human sleep and circadian clock : a model approach. Sci. Rep. 7, 45158 ( 2017 ) .
  151. Crowley, S. J. & Carskadon, M. A. Modifications to weekend recovery sleep delay circadian phase in older adolescents. Chronobiol. Int. 27, 1469–1492 ( 2010 ) .
  152. Wittmann, M., Dinich, J., Merrow, M. & Roenneberg, T. Social jetlag : misalignment of biological and sociable time. Chronobiol. Int. 23, 497–509 ( 2006 ) .
  153. Chen, K. & Kandel, D. B. The lifelike history of drug use from adolescence to the mid-thirties in a general population sample distribution. Am. J. Publ. Health 85, 41–47 ( 1995 ) .
  154. Falcon, E. & McClung, C. A. A role for the circadian genes in drug addiction. Neuropharmacology 56, 91–96 ( 2009 ). ( Suppl. 1 ) .
  155. O ’ Brien, E. M. & Mindell, J. A. Sleep and risk-taking behavior in adolescents. Behav. Sleep Med. 3, 113–133 ( 2005 ) .
  156. Pasch, K. E., Laska, M. N., Lytle, L. A. & Moe, S. G. Adolescent rest, risk behaviors, and depressive symptoms : are they linked ? Am. J. Health Behav. 34, 237–248 ( 2010 ) .
  157. McKnight-Eily, L. R. et aluminum. Relationships between hours of sleep and health-risk behaviors in US adolescent students. Prev. Med. 53, 271–273 ( 2011 ) .
  158. Paiva, T., Gaspar, T. & Matos, M. G. Mutual relations between rest privation, sleep stealers and risk behaviours in adolescents. Sleep Sci. 9, 7–13 ( 2016 ) .
  159. Sivertsen, B., Skogen, J. C., Jakobsen, R. & Hysing, M. Sleep and function of alcohol and drug in adolescence. A boastfully population-based cogitation of norwegian adolescents aged 16 to 19 years. Drug Alcohol Depend. 149, 180–186 ( 2015 ) .
  160. Thomas, A. G., Monahan, K. C., Lukowski, A. F. & Cauffman, E. Sleep problems across development : a pathway to adolescent hazard taking through working memory. J. Youth Adolesc. 44, 447–464 ( 2015 ) .
  161. Wheaton, A. G., Olsen, E. O., Miller, G. F. & Croft, J. B. Sleep duration and injury-related risk behaviors among gamey school students — United States, 2007–2013. MMWR Morb. Mortal. Wkly Rep. 65, 337–341 ( 2016 ) .
  162. Pasch, K. E., Latimer, L. A., Cance, J. D., Moe, S. G. & Lytle, L. A. Longitudinal bi-directional relationships between sleep and youth means practice. J. Youth Adolesc. 41, 1184–1196 ( 2012 ) .
  163. Hasler, B. P., Martin, C. S., Wood, D. S., Rosario, B. & Clark, D. B. A longitudinal cogitation of insomnia and other sleep complaints in adolescents with and without alcohol use disorders. Alcohol Clin. Exp. Res. 38, 2225–2233 ( 2014 ) .
  164. Hasler, B. P., Kirisci, L. & Clark, D. B. Restless sleep and variable sleep time during late childhood accelerate the onset of alcohol and other drug involvement. J. Stud. Alcohol Drugs 77, 649–655 ( 2016 ) .
  165. Hasler, B. P., Soehner, A. M. & Clark, D. B. Sleep and circadian contributions to adolescent alcohol use disorder. Alcohol 49, 377–387 ( 2015 ) .
  166. Tavernier, R., Munroe, M. & Willoughby, T. Perceived morningness-eveningness predicts academic adjustment and kernel habit across university, but sociable jetlag is not to blame. Chronobiol. Int. 32, 1233–1245 ( 2015 ) .
  167. Hasler, B. P., Casement, M. D., Sitnick, S. L., Shaw, D. S. & Forbes, E. E. Eveningness among late adolescent males predicts nervous reactivity to reward and alcohol dependence two years former. Behav. Brain Res. 327, 112–120 ( 2017 ). This study shows that an evening chronotype during late adolescence (20 years of age) is associated with strength of activation in the VS to reward outcome, which was positively correlated with alcohol dependence 2 years later .
  168. Mednick, S. C., Christakis, N. A. & Fowler, J. H. The spread of sleep personnel casualty influences drug function in adolescent social networks. PLOS ONE 5, e9775 ( 2010 ).
  169. Forbes, E. E. et aluminum. healthy adolescents ’ neural response to reward : associations with puberty, positive affect, and depressive symptoms. J. Am. Acad. Child Adolesc. Psychiatry 49, 162–172 ( 2010 ) .
  170. Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T. & Luna, B. Developmental changes in brain officiate underlying the influence of reward work on inhibitory command. Dev. Cogn. Neurosci. 1, 517–529 ( 2011 ) .
  171. Frischknecht, R. & Gundelfinger, E. D. The brain ’ s extracellular matrix and its role in synaptic malleability. Adv. Exp. Med. Biol. 970, 153–171 ( 2012 ) .
  172. Luciana, M. & Collins, P. F. Incentive motivation, cognitive control, and the adolescent mind : is it time for a prototype switch ? Child Dev. Perspect. 6, 392–399 ( 2012 ) .
  173. Padmanabhan, A. & Luna, B. Developmental imaging genetics : linking dopamine function to adolescent behavior. Brain Cogn. 89, 27–38 ( 2014 ) .
  174. Ernst, M. & Fudge, J. L. A developmental neurobiological exemplary of motivate behavior : human body, connectivity and growth of the triadic nodes. Neurosci. Biobehav. Rev. 33, 367–382 ( 2009 ) .
  175. Somerville, L. H., Jones, R. M. & Casey, B. J. A fourth dimension of change : behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain Cogn. 72, 124–133 ( 2010 ) .
  176. Logan, R. W., Williams, W. P. & McClung, C. A. Circadian rhythm method of birth control and addiction : mechanistic insights and future directions. Behav. Neurosci. 128, 387–412 ( 2014 ) .
  177. Hasler, B. P., Forbes, E. E. & Franzen, P. L. Time-of-day differences and short-run constancy of the nervous response to monetary reinforce : a pilot study. Psychiatry Res. 224, 22–27 ( 2014 ) .
  178. Hasler, B. P. et aluminum. Chronotype and diurnal patterns of plus affect and affectional neural circuitry in primary coil insomnia. J. Sleep Res. 21, 515–526 ( 2012 ) .
  179. Hasler, B. P., Sitnick, S. L., Shaw, D. S. & Forbes, E. E. An alter neural answer to reward may contribute to alcohol problems among late adolescents with an evening chronotype. Psychiatry Res. 214, 357–364 ( 2013 ) .
  180. Mullin, B. C. et alabama. sleep loss amplifies striatal activation to monetary advantage. Psychol. Med. 43, 2215–2225 ( 2013 ) .
  181. Miller, M. B., Donahue, M. L., Carey, K. B. & Scott-Sheldon, L. A. J. Insomnia treatment in the context of alcohol use disorder : a taxonomic review and meta-analysis. Drug Alcohol Depend. 181, 200–207 ( 2017 ) .
  182. Merikangas, K. R. et aluminum. Lifetime prevalence of mental disorders in U. S. adolescents : results from the National Comorbidity Survey Replication — Adolescent Supplement ( NCS-A ). J. Am. Acad. Child Adolesc. Psychiatry 49, 980–989 ( 2010 ) .
  183. Lamont, E. W., Coutu, D. L., Cermakian, N. & Boivin, D. B. Circadian cycle and clock genes in psychotic disorders. Isr. J. Psychiatry Relat. Sci. 47, 27–35 ( 2010 ) .
  184. McClung, C. A. How might circadian rhythms control temper ? Let me count the ways. Biol. Psychiatry 74, 242–249 ( 2013 ) .
  185. Mansour, H. A. et alabama. circadian phase variation in bipolar I disorder. Chronobiol. Int. 22, 571–584 ( 2005 ) .
  186. McCarthy, M. J. & Welsh, D. K. Cellular circadian clocks in climate disorders. J. Biol. Rhythms 27, 339–352 ( 2012 ) .
  187. McClung, C. A. Circadian rhythm method of birth control and temper regulation : insights from pre-clinical models. Eur. Neuropsychopharmacol. 21, S683–S693 ( 2011 ) .
  188. Wulff, K., Dijk, D. J., Middleton, B., Foster, R. G. & Joyce, E. M. Sleep and circadian rhythm dislocation in schizophrenia. Br. J. Psychiatry 200, 308–316 ( 2012 ). This study reports notable circadian misalignment (phase delays and advances) of sleep–wake cycles and melatonin rhythms in patients with schizophrenia despite other factors, including mood, cognitive status and pharmacological treatments .
  189. Frank, E., Swartz, H. A. & Kupfer, D. J. Interpersonal and social cycle therapy : managing the chaos of bipolar disorder. Biol. Psychiatry 48, 593–604 ( 2000 ) .
  190. Malkoff-Schwartz, S. et aluminum. nerve-racking life events and social rhythm method of birth control disruption in the onset of frenzied and depressive bipolar episodes : a preliminary investigation. Arch. Gen. Psychiatry 55, 702–707 ( 1998 ) .
  191. Melo, M. C. A., Abreu, R. L. C., Linhares Neto, V. B., de Bruin, P. F. C. & de Bruin, V. M. S. Chronotype and circadian cycle in bipolar disorder : a taxonomic recapitulation. Sleep Med. Rev. 34, 46–58 ( 2017 ) .
  192. Winthorst, W. H. et aluminum. Seasonal affectional perturb and non-seasonal affectional disorders : results from the NESDA analyze. BJPsych Open 3, 196–203 ( 2017 ) .
  193. Medici, C. R., Vestergaard, C. H., Hadzi-Pavlovic, D., Munk-Jorgensen, P. & Parker, G. Seasonal variations in hospital admissions for mania : analyze for associations with upwind variables over clock. J. Affect. Disord. 205, 81–86 ( 2016 ) .
  194. young, J. W. & Dulcis, D. Investigating the mechanism ( s ) underlying switching between states in bipolar disorderliness. Eur. J. Pharmacol. 759, 151–162 ( 2015 ) .
  195. Raniti, M. B. et aluminum. rest duration and sleep timbre : associations with depressive symptoms across adolescence. Behav. Sleep Med. 15, 198–215 ( 2017 ) .
  196. Lewy, A. J. Depressive disorders may more normally be related to circadian phase delays quite than advances : time will tell. Sleep Med. 11, 117–118 ( 2010 ) .
  197. Addington, J. & Heinssen, R. Prediction and prevention of psychosis in youth at clinical high risk. Annu. Rev. Clin. Psychol. 8, 269–289 ( 2012 ) .
  198. Lunsford-Avery, J. R. et aluminum. Adolescents at clinical-high gamble for psychosis : circadian cycle disturbances predict worsened prognosis at 1-year follow-up. Schizophr. Res. 189, 37–42 ( 2017 ) .
  199. Robillard, R. et aluminum. Sleep–wake profiles predict longitudinal changes in frenzied symptoms and memory in young people with climate disorders. J. Sleep Res. 25, 549–555 ( 2016 ) .
  200. Crews, F. T., Vetreno, R. P., Broadwater, M. A. & Robinson, D. L. Adolescent alcohol photograph persistently impacts adult neurobiology and behavior. Pharmacol. Rev. 68, 1074–1109 ( 2016 ) .
  201. Wei, Y., Krishnan, G. P. & Bazhenov, M. Synaptic mechanism of memory consolidation during rest dull oscillations. J. Neurosci. 36, 4231–4247 ( 2016 ) .
  202. Walker, M. P. & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 44, 121–133 ( 2004 ) .
  203. Havekes, R., Meerlo, P. & Abel, T. Animal studies on the function of sleep in memory : from behavioral performance to molecular mechanisms. Curr. Top. Behav. Neurosci. 25, 183–206 ( 2015 ) .
  204. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 ( 2006 ). This study establishes the importance of slow-wave sleep during non-REM episodes that occur during the early night and shows that it promotes the retention of hippocampus-dependent declarative memories .
  205. Selemon, L. D. & Zecevic, N. Schizophrenia : a narrative of two critical periods for prefrontal cortical development. Transl Psychiatry 5, e623 ( 2015 ) .
  206. Keshavan, M. S., Anderson, S. & Pettegrew, J. W. Is schizophrenia ascribable to excessive synaptic pruning in the prefrontal cerebral cortex ? The Feinberg hypothesis revisited. J. Psychiatr. Res. 28, 239–265 ( 1994 ) .
  207. Billeh, Y. N. et aluminum. Effects of chronic sleep restriction during early adolescence on the pornographic pattern of connectivity of sneak secondary motor cerebral cortex. eNeuro hypertext transfer protocol : //doi.org/10.1523/ENEURO.0053-16-2016 ( 2016 ) .
  208. Carskadon, M. A. Patterns of rest and sleepiness in adolescents. Pediatrician 17, 5–12 ( 1990 ) .
  209. Johnson, E. O., Roth, T., Schultz, L. & Breslau, N. Epidemiology of DSM-IV insomnia in adolescence : life preponderance, chronicity, and an emergent gender remainder. Pediatrics 117, e247–e256 ( 2006 ) .
  210. Sivertsen, B. et alabama. Delayed rest phase syndrome in adolescents : preponderance and correlates in a large population based study. BMC Publ. Health 13, 1163 ( 2013 ) .
  211. Owens, J. A., Belon, K. & Moss, P. Impact of delaying school starting signal time on adolescent sleep, mood, and behavior. Arch. Pediatr. Adolesc. Med. 164, 608–614 ( 2010 ) .
  212. Wirz-Justice, A. & Terman, M. Chronotherapeutics ( light and wake therapy ) as a class of interventions for affectional disorders. Handb. Clin. Neurol. 106, 697–713 ( 2012 ) .
  213. Srinivasan, V., De Berardis, D., Shillcutt, S. D. & Brzezinski, A. Role of melatonin in temper disorders and the antidepressant effects of agomelatine. Expert Opin. Investig. Drugs 21, 1503–1522 ( 2012 ) .
  214. Wu, J. C. et aluminum. Rapid and sustained antidepressant response with sleep privation and chronotherapy in bipolar disorder. Biol. Psychiatry 66, 298–301 ( 2009 ). This study demonstrates, in a cohort of 49 patients with bipolar disorder, the ability of non-invasive circadian therapy (that is, bright light therapy and sleep phase advance) and sleep (that is, acute sleep deprivation) to improve and sustain the therapeutic efficacy of lithium and antidepressants on mood symptoms .
  215. Li, J., Lu, W. Q., Beesley, S., Loudon, A. S. & Meng, Q. J. Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLOS ONE 7, e33292 ( 2012 ) .
  216. Johansson, A. S., Brask, J., Owe-Larsson, B., Hetta, J. & Lundkvist, G. B. Valproic acidic phase shifts the rhythmical construction of Period2 : :Luciferase. J. Biol. Rhythms 26, 541–551 ( 2011 ) .
  217. Sprouse, J., Braselton, J. & Reynolds, L. Fluoxetine modulates the circadian biological clock via phase advances of suprachiasmatic nucleus neural fire. Biol. Psychiatry 60, 896–899 ( 2006 ) .
  218. Duncan, W. C. Jr et alabama. Motor-activity markers of circadian timekeeping are related to ketamine ’ s rapid antidepressant properties. Biol. Psychiatry 82, 361–369 ( 2017 ). In a study of 51 patients with major depressive disorder or bipolar disorder, circadian activity patterns prior to and following the administration of ketamine are linked to therapeutic response of mood symptoms .
  219. Kragh, M. et aluminum. Predictors of reception to combined wake island and light therapy in treatment-resistant inpatients with depressive disorder. Chronobiol. Int. hypertext transfer protocol : //doi.org/10.1080/07420528.2018.1468341 ( 2018 ) .
  220. Adan, A. & Natale, V. Gender differences in morningness–eveningness preference. Chronobiol. Int. 19, 709–720 ( 2002 ) .
  221. Caci, H., Deschaux, O., Adan, A. & Natale, V. Comparing three morningness scales : age and gender effects, social organization and cut-off criteria. Sleep Med. 10, 240–245 ( 2009 ) .
  222. Duarte, L. L. et aluminum. Chronotype growth related to gender. Braz. J. Med. Biol. Res. 47, 316–320 ( 2014 ) .
  223. Paine, S. J., Gander, P. H. & Travier, N. The epidemiology of morningness/eveningness : charm of long time, gender, ethnicity, and socioeconomic factors in adults ( 30–49 years ). J. Biol. Rhythms 21, 68–76 ( 2006 ) .
  224. Patke, A. et alabama. mutant of the human circadian clock gene CRY1 in familial stay sleep phase disorder. Cell 169, 203–215 ( 2017 ) .
  225. Kripke, D. F. et aluminum. circadian polymorphism in night owl, in bipolars, and in non-24-hour sleep cycles. Psychiatry Invest. 11, 345–362 ( 2014 ) .
  226. Murray, J. M. et aluminum. prevalence of circadian misalignment and its affiliation with depressive symptoms in delay sleep phase disorder. Sleep 40, zsw002 ( 2017 ) .
  227. James, S. M., Honn, K. A., Gaddameedhi, S. & Van Dongen, H. P. A. Shift solve : disrupted circadian rhythm and sleep-implications for health and wellbeing. Curr. Sleep Med. Rep. 3, 104–112 ( 2017 ) .
  228. Hall, A. L., Franche, R. L. & Koehoorn, M. Examining exposure assessment in chemise make research : a study on depression among nurses. Ann. Work Expo. Health 62, 182–194 ( 2018 ) .
  229. Kang, M. Y., Kwon, H. J., Choi, K. H., Kang, C. W. & Kim, H. The relationship between shift exercise and genial health among electronics workers in South Korea : a cross-sectional report. PLOS ONE 12, e0188019 ( 2017 ) .
  230. McNeely, E. et aluminum. The self-reported health of U. S. flight attendants compared to the general population. Environ. Health 13, 13 ( 2014 ) .
  231. McNeely, E. et aluminum. Cancer prevalence among flight attendants compared to the general population. Environ. Health 17, 49 ( 2018 ) .
  232. Grajewski, B., Whelan, E. A., Nguyen, M. M., Kwan, L. & Cole, R. J. Sleep affray in female flight attendants and teachers. Aerosp. Med. Hum. Perform. 87, 638–645 ( 2016 ) .
  233. McNeely, E., Mordukhovich, I., Tideman, S., Gale, S. & Coull, B. Estimating the health consequences of flight accompaniment work : compare trajectory attendant health to the general population in a cross-section sketch. BMC Publ. Health 18, 346 ( 2018 ) .
  234. Feinsilver, S. H. & Hernandez, A. B. Sleep in the aged : unanswered questions. Clin. Geriatr. Med. 33, 579–596 ( 2017 ) .
  235. Mattis, J. & Sehgal, A. Circadian rhythm, sleep, and disorders of aging. Trends Endocrinol. Metab. 27, 192–203 ( 2016 ) .
  236. Musiek, E. S. & Holtzman, D. M. Mechanisms linking circadian clocks, rest, and neurodegeneration. Science 354, 1004–1008 ( 2016 ) .
  237. Karasek, M. Melatonin, human age, and age-related diseases. Exp. Gerontol. 39, 1723–1729 ( 2004 ) .
  238. Zeitzer, J. M. et alabama. Do plasma melatonin concentrations decline with age ? Am. J. Med. 107, 432–436 ( 1999 ) .
  239. Czeisler, C. A. et aluminum. Association of sleep–wake habits in older people with changes in output of circadian pacesetter. Lancet 340, 933–936 ( 1992 ). This landmark study suggests that changes in sleep timing and consolidation driven by the circadian system underlie sleep disturbances in elderly individuals .
  240. Wang, J. L. et aluminum. Suprachiasmatic nerve cell numbers and rest–activity circadian rhythm in older humans. Ann. Neurol. 78, 317–322 ( 2015 ) .
  241. Chang, H. C. & Guarente, L. SIRT1 mediates central circadian manipulate in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 ( 2013 ). This mouse study reveals that reductions of sirtuin activity in the SCN leads to a gradual age-dependent dampening of SCN activity and locomotor rhythms .
  242. Yamazaki, S. et alabama. Effects of aging on central and peripheral mammalian clocks. Proc. Natl Acad. Sci. USA 99, 10801–10806 ( 2002 ) .
  243. Swaab, D. F., Fliers, E. & Partiman, T. S. The suprachiasmatic nucleus of the homo brain in relative to sex, long time and doddering dementia. Brain Res. 342, 37–44 ( 1985 ) .
  244. Zhou, J. N., Hofman, M. A. & Swaab, D. F. VIP neurons in the homo SCN in relative to sex, long time, and Alzheimer ’ randomness disease. Neurobiol. Aging 16, 571–576 ( 1995 ) .
  245. Roozendaal, B., van Gool, W. A., Swaab, D. F., Hoogendijk, J. E. & Mirmiran, M. Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Res. 409, 259–264 ( 1987 ) .
  246. Tsukahara, S., Tanaka, S., Ishida, K., Hoshi, N. & Kitagawa, H. Age-related switch and its sexual activity differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Exp. Gerontol. 40, 147–155 ( 2005 ) .
  247. Nygard, M., Hill, R. H., Wikstrom, M. A. & Kristensson, K. Age-related changes in electrophysiological properties of the sneak suprachiasmatic nucleus in vitro. Brain Res. Bull. 65, 149–154 ( 2005 ) .
  248. Farajnia, S. et alabama. evidence for neural desynchrony in the aged suprachiasmatic nucleus clock. J. Neurosci. 32, 5891–5899 ( 2012 ) .
  249. Nakamura, T. J. et aluminum. age-related decline in circadian output. J. Neurosci. 31, 10201–10205 ( 2011 ) .
  250. Tranah, G. J. et aluminum. circadian activity rhythm and risk of incident dementia and mild cognitive stultification in older women. Ann. Neurol. 70, 722–732 ( 2011 ) .
  251. Chen, H. F., Huang, C. Q., You, C., Wang, Z. R. & Si-qing, H. Polymorphism of CLOCK gene rs 4580704C > G is associated with susceptibility of Alzheimer ’ mho disease in a chinese population. Arch. Med. Res. 44, 203–207 ( 2013 ) .
  252. Chen, Q., Peng, X. D., Huang, C. Q., Hu, X. Y. & Zhang, X. M. Association between ARNTL ( BMAL1 ) rs2278749 polymorphism T > C and susceptibility to Alzheimer disease in a chinese population. Genet. Mol. Res. 14, 18515–18522 ( 2015 ) .
  253. Gu, Z. et alabama. Association of ARNTL and PER1 genes with Parkinson ’ sulfur disease : a case-control discipline of Han Chinese. Sci. Rep. 5, 15891 ( 2015 ) .
  254. Videnovic, A. & Golombek, D. Circadian dysregulation in Parkinson ’ mho disease. Neurobiol. Sleep Circadian Rhythms 2, 53–58 ( 2017 ) .
  255. Breen, D. P. et alabama. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71, 589–595 ( 2014 ). This study shows significantly increased sleep latency, reduced sleep efficiency and reduced REM, along with reduced melatonin levels and a loss of BMAL1 serum expression rhythms, in a cohort of 239 individuals with PD .
  256. Gros, P. & Videnovic, A. Sleep and circadian cycle disorders in Parkinson ’ s disease. Curr. Sleep Med. Rep. 3, 222–234 ( 2017 ) .
  257. Uchida, K., Okamoto, N., Ohara, K. & Morita, Y. Daily rhythm method of birth control of serum melatonin in patients with dementia of the debauched type. Brain Res. 717, 154–159 ( 1996 ) .
  258. Videnovic, A. et aluminum. circadian melatonin rhythm and excessive day sleepiness in Parkinson disease. JAMA Neurol. 71, 463–469 ( 2014 ) .
  259. Claassen, D. O. & Kutscher, S. J. Sleep disturbances in Parkinson ’ south disease patients and management options. Nat. Sci. Sleep 3, 125–133 ( 2011 ) .
  260. Rothman, S. M. & Mattson, M. P. Sleep disturbances in Alzheimer ’ second and Parkinson ’ randomness diseases. Neuromolecular Med. 14, 194–204 ( 2012 ) .
  261. Vitiello, M. V., Prinz, P. N., Williams, D. E., Frommlet, M. S. & Ries, R. K. Sleep disturbances in patients with mild-stage Alzheimer ’ sulfur disease. J. Gerontol. 45, M131–M138 ( 1990 ) .
  262. Stopa, E. G. et alabama. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 58, 29–39 ( 1999 ) .
  263. Cermakian, N., Lamont, E. W., Boudreau, P. & Boivin, D. B. Circadian clock gene construction in brain regions of Alzheimer ‘ sulfur disease patients and control subjects. J. Biol. Rhythms 26, 160–170 ( 2011 ) .
  264. Logan, R. W. et aluminum. NAD+ cellular oxidation-reduction and SIRT1 regulate the diurnal rhythm method of birth control of tyrosine hydroxylase and conditioned cocaine reward. Mol. Psychiatry. hypertext transfer protocol : //doi.org/10.1038/s41380-018-0061-1 ( 2018 ). This study demonstrates mechanistic links between circadian regulation of SIRT1-dependent metabolic signalling and dopaminergic neurotransmission in the mouse ventral tegmental area, which is important for drug reward .
  265. Belaidi, A. A. et alabama. Marked age-related changes in brain iron homeostasis in starchlike protein harbinger hard mouse. Neurotherapeutics hypertext transfer protocol : //doi.org/10.1007/s13311-018-0656-x ( 2018 ) .
  266. Uranga, R. M. & Salvador, G. A. Unraveling the burden of iron in neurodegeneration : intersections with starchlike beta peptide pathology. Oxid. Med. Cell. Longev. 2018, 2850341 ( 2018 ) .
  267. Graham, D. G. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643 ( 1978 ) .
  268. Tse, D. C., McCreery, R. L. & Adams, R. N. Potential oxidative pathways of brain catecholamines. J. Med. Chem. 19, 37–40 ( 1976 ) .
  269. Burbulla, L. F. et alabama. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson ’ randomness disease. Science 357, 1255–1261 ( 2017 ). This study demonstrates that mitochondrial stress promotes the accumulation of oxidized dopamine, consequently increasing α -synuclein aggregates in neurons derived from patients with PD, an effect selective to human neurons .
  270. Barone, P. et aluminum. The PRIAMO discipline : a multicenter appraisal of nonmotor symptoms and their impingement on timbre of liveliness in Parkinson ’ sulfur disease. Mov. Disord. 24, 1641–1649 ( 2009 ) .
  271. Chaudhuri, K. R. et aluminum. International multicenter pilot study of the first comprehensive examination self-completed nonmotor symptoms questionnaire for Parkinson ’ s disease : the NMSQuest learn. Mov. Disord. 21, 916–923 ( 2006 ) .
  272. Goodman, A. O., Morton, A. J. & Barker, R. A. Identifying sleep disturbances in Huntington ’ s disease using a dim-witted disease-focused questionnaire. PLOS Curr. 2, RRN1189 ( 2010 ) .
  273. Aziz, N. A., Anguelova, G. V., Marinus, J., Lammers, G. J. & Roos, R. A. Sleep and circadian rhythm alterations correlate with depression and cognitive stultification in Huntington ’ mho disease. Parkinsonism Relat. Disord. 16, 345–350 ( 2010 ) .
  274. Iranzo, A. et aluminum. Neurodegenerative perturb hazard in idiopathic REM sleep demeanor disorder : study in 174 patients. PLOS ONE 9, e89741 ( 2014 ) .
  275. Schenck, C. H., Boeve, B. F. & Mahowald, M. W. Delayed emergence of a parkinsonian disorder or dementia in 81 % of older men initially diagnosed with idiopathic rapid eye motion sleep behavior disorderliness : a 16-year update on a previously reported serial. Sleep Med. 14, 744–748 ( 2013 ) .
  276. Kudo, T., Loh, D. H., Truong, D., Wu, Y. & Colwell, C. S. Circadian dysfunction in a mouse model of Parkinson ’ south disease. Exp. Neurol. 232, 66–75 ( 2011 ) .
  277. Grippo, R. M., Purohit, A. M., Zhang, Q., Zweifel, L. S. & Guler, A. D. Direct midbrain dopamine input to the suprachiasmatic lens nucleus accelerates circadian entrainment. Curr. Biol. 27, 2465–2475 ( 2017 ). This study shows re-entrainment of the SCN to phase shifts in the light–dark schedule is facilitated by dopaminergic projections from the ventral tegmental area to the SCN and is dependent on dopamine 1 receptor-expressing neurons in the SCN .
  278. Korshunov, K. S., Blakemore, L. J. & Trombley, P. Q. Dopamine : a modulator of circadian rhythm in the central anxious system. Front. Cell. Neurosci. 11, 91 ( 2017 ) .
  279. Fifel, K. & Cooper, H. M. Loss of dopamine disrupts circadian rhythm in a mouse model of Parkinson ’ sulfur disease. Neurobiol. Dis. 71, 359–369 ( 2014 ) .
  280. Gnanasekaran, G. “ Sundowning ” as a biological phenomenon : current understandings and future directions : an update. Aging Clin. Exp. Res. 28, 383–392 ( 2016 ) .
  281. Bedrosian, T. A. & Nelson, R. J. Sundowning syndrome in aging and dementia : research in mouse models. Exp. Neurol. 243, 67–73 ( 2013 ) .
  282. Volicer, L., Harper, D. G., Manning, B. C., Goldstein, R. & Satlin, A. Sundowning and circadian rhythm method of birth control in Alzheimer ’ s disease. Am. J. Psychiatry 158, 704–711 ( 2001 ). This study shows that patients with AD have less diurnal activity, more nocturnal activity and phase delays in body-temperature rhythms, and that the severity of sundowning is positively correlated with lower-amplitude and more-phase-delayed rhythms .
  283. Todd, W. D. et aluminum. A hypothalamic circuit for the circadian restraint of aggression. Nat. Neurosci. 21, 717–724 ( 2018 ). This chemogenetic study in mice reveals a neural circuit involving projections from the SCN to the ventromedial hypothalamus that drives time-of-day-dependent aggressive behaviours .
  284. Shokri-Kojori, E. et alabama. β-Amyloid accretion in the human brain after one night of sleep privation. Proc. Natl Acad. Sci. USA 115, 4483–4488 ( 2018 ) .
  285. Xie, L. et alabama. sleep drives metabolite clearance from the adult mind. Science 342, 373–377 ( 2013 ). A landmark study in mice demonstrating that wakefulness suppresses the outflow of cerebral spinal fluid from the brain, whereas sleep leads to an increase in convective fluxes of fluid, effectively promoting the clearance of neurotoxic metabolics, including Aβ .
  286. Da Mesquita, S. et aluminum. functional aspects of meningeal lymphatics in ageing and Alzheimer ’ south disease. Nature 560, 185–191 ( 2018 ) .
  287. Kang, J. E. et aluminum. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 ( 2009 ) .
  288. Tabuchi, M. et aluminum. sleep interacts with Aβ to modulate intrinsic neural excitability. Curr. Biol. 25, 702–712 ( 2015 ) .
  289. Faghih, M. M. & Sharp, M. K. Is bulge stream plausible in perivascular, paravascular and paravenous channels ? Fluids Barriers CNS 15, 17 ( 2018 ) .
  290. McClung, C. A. Mind your rhythm method of birth control : an important function for circadian genes in neuroprotection. J. Clin. Invest. 123, 4994–4996 ( 2013 ) .
  291. Musiek, E. S. et alabama. circadian clock proteins regulate neural oxidation-reduction homeostasis and neurodegeneration. J. Clin. Invest. 123, 5389–5400 ( 2013 ). This preclinical investigation demonstrates that components of the molecular clock control redox state and, when disrupted, lead to oxidative stress and cell death related to neurodegeneration .
  292. Kondratov, R. V., Vykhovanets, O., Kondratova, A. A. & Antoch, M. P. Antioxidant N -acetyl-L-cysteine ameliorates symptoms of premature aging associated with the insufficiency of the circadian protein BMAL1. Aging 1, 979–987 ( 2009 ) .
  293. Chauhan, R., Chen, K. F., Kent, B. A. & Crowther, D. C. Central and peripheral circadian clocks and their function in Alzheimer ’ second disease. Dis. Model. Mech. 10, 1187–1199 ( 2017 ) .
  294. Homolak, J., Mudrovcic, M., Vukic, B. & Toljan, K. Circadian rhythm and Alzheimer ’ randomness disease. Med. Sci. 6, 52 ( 2018 ) .
  295. Huang, Z. et aluminum. circadian rhythm dysfunction accelerates disease progress in a shiner model with amyotrophic lateral sclerosis. Front. Neurol. 9, 218 ( 2018 ) .
  296. Skjerve, A., Bjorvatn, B. & Holsten, F. Light therapy for behavioral and psychological symptoms of dementia. Int. J. Geriatr. Psychiatry 19, 516–522 ( 2004 ) .
  297. Yamadera, H. et alabama. Effects of bright light on cognitive and sleep-wake ( circadian ) cycle disturbances in Alzheimer-type dementia. Psychiatry Clin. Neurosci. 54, 352–353 ( 2000 ) .
  298. Hanford, N. & Figueiro, M. Light therapy and Alzheimer ’ randomness disease and related dementia : past, present, and future. J. Alzheimers Dis. 33, 913–922 ( 2013 ) .
  299. De Lepeleire, J., Bouwen, A., De Coninck, L. & Buntinx, F. Insufficient lighting in nursing homes. J. Am. Med. Dir. Assoc. 8, 314–317 ( 2007 ) .
  300. Figueiro, M. G. et alabama. Tailored lighting intervention improves measures of sleep, depression, and agitation in persons with Alzheimer ’ second disease and refer dementia life in long-run care facilities. Clin. Interv. Aging 9, 1527–1537 ( 2014 ) .
  301. Riemersma-van five hundred Lek, R. F. et alabama. effect of bright unhorse and melatonin on cognitive and noncognitive function in aged residents of group manage facilities : a randomized controlled test. JAMA 299, 2642–2655 ( 2008 ). This double-blinded randomized controlled trial of 189 elderly residents of a group care facility demonstrates that a combination of melatonin supplementation and scheduled light exposure improves cognitive symptoms of dementia and reduces aggression .
  302. Singer, C. et aluminum. A multicenter, placebo-controlled test of melatonin for sleep affray in Alzheimer ’ second disease. Sleep 26, 893–901 ( 2003 ) .
  303. Coogan, A. N. et alabama. The circadian system in Alzheimer ’ south disease : disturbances, mechanisms, and opportunities. Biol. Psychiatry 74, 333–339 ( 2013 ) .
  304. Arey, R. N. et alabama. An important role for cholecystokinin, a CLOCK aim gene, in the growth and treatment of manic-like behaviors. Mol. Psychiatry 19, 342–350 ( 2014 ) .
  305. Coque, L. et alabama. specific function of VTA dopamine neural discharge rates and morphology in the reverse of anxiety-related, but not depression-related behavior in the Clock ∆19 sneak model of mania. Neuropsychopharmacology 36, 1478–1488 ( 2011 ) .
  306. Dzirasa, K. et alabama. Lithium ameliorates nucleus accumbens phase-signaling dysfunction in a genetic mouse model of mania. J. Neurosci. 30, 16314–16323 ( 2010 ) .
  307. McClung, C. A. Circadian rhythm, the mesolimbic dopaminergic circuit, and drug addiction. ScientificWorldJournal 7, 194–202 ( 2007 ) .
  308. McClung, C. A. et aluminum. regulation of dopaminergic transmission and cocaine reward by the Cloc k gene. Proc. Natl Acad. Sci. USA 102, 9377–9381 ( 2005 ) .
  309. Ozburn, A. R. et aluminum. direct regulation of diurnal Drd3 construction and cocaine honor by NPAS2. Biol. Psychiatry 77, 425–433 ( 2015 ) .
  310. Ozburn, A. R. et alabama. NPAS2 rule of anxiety-like behavior and GABAA receptors. Front. Mol. Neurosci. 10, 360 ( 2017 ) .
  311. Ozburn, A. R., Larson, E. B., Self, D. W. & McClung, C. A. Cocaine self-administration behaviors in Clock∆ 19 shiner. Psychopharmacology 223, 169–177 ( 2012 ) .
  312. Parekh, P. K. et alabama. Altered GluA1 ( Gria1 ) function and accumbal synaptic malleability in the Clock ∆19 model of bipolar mania. Biol. Psychiatry. hypertext transfer protocol : //doi.org/10.1016/j.biopsych.2017.06.022 ( 2017 ) .
  313. Roybal, K. et alabama. Mania-like behavior induced by disruption of CLOCK. Proc. Natl Acad. Sci. USA 104, 6406–6411 ( 2007 ). This study demonstrates mice harbouring a mutation in Clock display a behavioural repertoire similar to human mania and provides evidence for CLOCK specifically in the ventral tegmental area to be important for these behaviours via modulation of dopamine cell firing.
  314. Sidor, M. M. et aluminum. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mouse. Mol. Psychiatry 20, 1406–1419 ( 2015 ) .
  315. Spencer, S. et alabama. A mutation in CLOCK leads to altered dopamine receptor officiate. J. Neurochem. 123, 124–134 ( 2012 ) .
  316. Neufeld-Cohen, A. et alabama. circadian control condition of oscillations in mitochondrial rate-limiting enzymes and food use by PERIOD proteins. Proc. Natl Acad. Sci. USA 113, E1673–E1682 ( 2016 ) .
  317. O ’ Neill, J. S. & Feeney, K. A. Circadian oxidation-reduction and metabolic oscillations in mammal systems. Antioxid. Redox Signal. 20, 2966–2981 ( 2014 ) .
  318. Marcheva, B. et alabama. circadian clocks and metabolism. Handb. Exp. Pharmacol. 217, 127–155 ( 2013 ) .
  319. Braun, R. et aluminum. Universal method acting for robust detection of circadian state of matter from gene expression. Proc. Natl Acad. Sci. USA 115, E9247–E9256 ( 2018 ). This study demonstrates the use of a set of computational algorithms called TimeSignature to predict the endogenous phase of an individual based on the particular gene signatures from the blood acquired at a single timepoint .
  320. Jones, S. E. et aluminum. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration venue. PLOS Genet. 12, e1006125 ( 2016 ) .
  321. Lane, J. M. et aluminum. Genome-wide association analysis identifies novel venue for chronotype in 100,420 individuals from the UK Biobank. Nat. Commun. 7, 10889 ( 2016 ) .
  322. LeGates, T. A., Fernandez, D. C. & Hattar, S. Light as a central modulator of circadian rhythm, rest and affect. Nat. Rev. Neurosci. 15, 443–454 ( 2014 ) .
  323. LeGates, T. A. et alabama. aberrant abstemious directly impair climate and learning through melanopsin-expressing neurons. Nature 491, 594–598 ( 2012 ) .
  324. Fernandez, D. C. et alabama. light affects climate and learning through distinct retina-brain pathways. Cell 175, 71–84 ( 2018 ). Using mice, this study demonstrates that light input to the brain reaches neural circuits related to depression and learning through distinct projections from the retina, revealing a potential mechanism by which aberrant light exposure (for example, light at night) affects mood and cognition .
  325. Librodo, P., Buckley, M., Luk, M. & Bisso, A. Chronotherapeutic drug delivery. J. Infus. Nurs. 38, S18–S23 ( 2015 ) .
  326. Ruben, M. D. et alabama. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicate. Sci. Transl Med. 10, eaat8806 ( 2018 ) .
  327. Melkani, G. C. & Panda, S. Time-restricted feed for prevention and treatment of cardiometabolic disorders. J. Physiol. 595, 3691–3700 ( 2017 ) .
  328. Mindikoglu, A. L., Opekun, A. R., Gagan, S. K. & Devaraj, S. Impact of time-restricted feeding and dawn-to-sunset fast on circadian rhythm, fleshiness, metabolic syndrome, and nonalcoholic fatso liver disease. Gastroenterol. Res. Pract. 2017, 3932491 ( 2017 ) .
  329. Stewart, K. T., McEachron, D. L., Rosenwasser, A. M. & Adler, N. T. Lithium lengthens circadian menstruation but fails to counteract behavioral helplessness in rats. Biol. Psychiatry 30, 515–518 ( 1991 ) .
  330. McCarthy, M. J. et aluminum. Genetic and clinical factors predict lithium ’ mho effects on PER2 gene formulation rhythm in cells from bipolar disorder patients. Transl Psychiatry 3, e318 ( 2013 ) .
  331. Sprouse, J., Reynolds, L., Braselton, J. & Schmidt, A. Serotonin-induced phase advances of SCN neural ignition in vitro : a possible function for 5-HT5A receptors ? Synapse 54, 111–118 ( 2004 ).
  332. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene formulation atlas in mammals : implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 ( 2014 ) .
  333. Dokucu, M. E., Yu, L. & Taghert, P. H. Lithium- and valproate-induced alterations in circadian locomotive behavior in Drosophila. Neuropsychopharmacology 30, 2216–2224 ( 2005 ) .
  334. Sathyanarayana, A. et alabama. Sleep quality prediction from clothing data using thick eruditeness. JMIR Mhealth Uhealth 4, e125 ( 2016 ) .
source : https://usakairali.com
Category : Make up
SEE ALSO  La Flora Khao Lak - SHA Extra Plus, Khao Lak – Updated 2022 Prices

ใส่ความเห็น

อีเมลของคุณจะไม่แสดงให้คนอื่นเห็น

https://www.antiquavox.it/live22-indonesia/ https://ogino.co.uk/wp-includes/slot-gacor/ https://overmarket.pl/wp-includes/slot-online/ https://www.amarfoundation.org/slot-gacor/